
An Introduction to NPL

Suman Karumuri
Hyderabad,India

suman.karumuri@gmail.com

ABSTRACT
Even in this Internet age, reading code is quite hard. Ex-
isting Program Visualisation systems could not make visu-
alisation of code in existing languages any easier because
the semantics of the languages were not designed with code
visualisation in mind.

NPL is an experimental procedural language designed to
aid program visualisation and is based on a paradigm called
”Connect Oriented Paradigm” in which the control and data
flow in a program are unified into a Signal and processing
in the program is unified into a Connect.

NPL makes it easy to read and maintain software as it
visualises the execution of code with its semantics intact.
Owing of its simplicity and generality, future applications
of NPL include interactive testing and debugging of appli-
cations, domain specific visualisation and also the ability to
model a subset of existing languages.

Keywords
Programming Languages, Compilers and Interpreters, Pro-
gram Visualisation

1. INTRODUCTION
Reading a novel is difficult. But watching a movie based

on the novel is easy. Similarly reading code is quite hard [5][3].
Though the compiler understands what the code would do,
it would not help the programmer while he is reading it.
Reading code would be a lot easier if the compiler could
create a movie out of the code, which we can just watch.
Such precise visualisation of code at various levels of detail
will help solve many software engineering problems [10]. In
this paper, we will see how NPL interpreter can create a
precise visualisation of its code.

To understand a program you must become both the ma-
chine and the program - Alan J. Perlis Epigram

Intuitive Visualisation of code is a tricky business as it
involves careful tracking of data flow, control flow and the
processing that goes on in the interpreter by instrumenting

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OOPSLA ’06 Portland, USA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

it(the machine details). The data obtained in-turn should
be mapped back to semantics of the language and actual
code to produce an intuitive visualisation (the program).

Accurate reconstruction of the semantics from the low-
level execution details is very difficult as the compiler has al-
ready morphed our code for efficiency to a point from which
the high-level semantics cannot be recovered. Moreover,
such a technique is highly dependent on the implementa-
tion of the interpreter. Every Program Visualisation system
faces this problem because the important low-level execu-
tion details are left out of language specifications since code
visualisation was not one of the design goals of a language.

Hence, a language designed to aid visualisation must spec-
ify the low-level execution mechanisms of the code and the
higher level semantics of the language in a coherent way.
The careful balance of these contradictory requirements will
make it possible to intuitively visualise the low-level execu-
tion of the programs with the high-level semantics of the
language intact, thus making reading code easier.

NPL is an experimental procedural language designed to
aid precise and intuitive visualisation of the execution of
code with its semantics intact. To the best of my knowledge,
NPL is the first language whose code can be accurately vi-
sualised by the interpreter. In this paper we shall see how
NPL is able to do it:

• In §2 we will support our claim that languages re-
designed to aid visualisation would yield better visual-
isation than better visualisation tools for existing lan-
guages.

• The redesigned language is built on Connect Oriented
Paradigm which acts as an intermediary representa-
tion between higher level semantics and low level exe-
cution details of code in §4.2

• Next we will discuss the syntax and semantics of the
NPL language based on ”Connect Oriented Paradigm”
in §4. Then we prove our claims that we can visualise
code with its semantics, by visualising a few examples
in NPL UI, the code visualiser for NPL, in §5.

• In §5.4, we will discuss how the NPL language design
acts as a foundation for other potential avenues of soft-
ware visualisation like domain specific visualisations
and interactive testing and debugging of programs.

Note: The main contribution of this paper is the ability
of a language interpreter to be able to visualise the source
code with its semantics. The intuitiveness of the visualisa-
tion can be improved by better art work and minor visual

enhancements. The specific details of the visualisation are
discussed only in passing to concentrate on the design issues.

2. LANGUAGES WITH VISUALISATION
Traditionally, code visualisation tools involve instrument-

ing the interpreter to gather data about specific aspects of a
program. The data thus gathered is presented/visualised to
the user in an intuitive UI. Though such tools are good for
visualising non-functional aspects of code, they cannot in-
tuitively visualise its functional aspects. The instrumented
interpreters usually have a high performance overhead to
retrieve everything that is happening in the program and
the technique is heavily dependent on the implementation
of the interpreter and hence is platform dependent. This de-
pendency leads to inconsistent visualisation of code across
platforms and even across various versions of the interpreter,
which hinders its adoption. These and various other issues
with this design are throughly discussed in [16].

The tools approach is bad because tools like journalists,
can report what has happened, but can only guess why it
has happened and are usually clueless about how it has hap-
pened. For example, Figure 1(a) taken from [18] shows the
addition of 100 and 98 in the Java Virtual Machine(JVM).
A tool can find out that 100 and 98 were present on the
stack, and 198 has been pushed onto the stack finally(the
what). But with additional information like the opcode ex-
ecuted, it can guess the operation but can only guess why
they are pushed onto the operand stack(the why). But it
neither knows how the opcode is executed nor how and why
the result has been pushed into the local variable(the how).

On the other hand the interpreter knows what, why and
how something has happened. The same visualisation of
addition by the NPL interpreter shown in Figure 1(b) is
highly intuitive. Even if you do not know what the red box
in the figure does, you can guess from a casual inspection,
that it has taken the decision to perform an addition based
on the first element of its input. Hence, the interpreters are
the ideal candidates to do the visualisation.

But an interpreter is very low-level and cannot show an
intuitive visualisation as it does not understand the higher-
level semantics of the language. Most of the information use-
ful for an intuitive visualisation has already been discarded
during byte-code generation for efficiency reasons. Adding
semantic tags to the byte code or designing a new high-level
byte code [6] can help aid visualisation to an extent, but
those approaches do not work in all scenarios. Code in a
language is difficult to visualise because visualisation was
not the design goal of the language. The solution to this
problem is to re-design the language so that the code writ-
ten in it is visualisable. But this does not mean the language
semantics need to be changed [1]. To facilitate code visu-
alisation the language designer should design a high level
interpreter and the semantics of the language based on it.
In the words of Martin Rinard [17] he should, ”Make sys-
tems open while preserving all the good things they do for
us”.

Designing languages by exposing their execution details
is unconventional, as languages are usually designed to hide
the execution details from its programmer. But, the stark
difference in the quality of visualisation of programs written
in a language designed to aid visualisation in Figure 1 is a
proof that we can gain a lot without giving too much away.
The NPL language discussed next is one such attempt.

(a) Addition in Java VM

(b) Addition in NPL

Figure 1: The figures (a) and (b) show the addition
of 2 numbers 100 and 98 in the JVM and the NPL
interpreter respectively. Lots of things like the op-
eration being performed and the way it is performed
cannot be shown by (a). But in (b) the whole pro-
cess is intuitive and transparent.

3. NPL
The name NPL, a recursive acronym, stands for NPL

Programming Language.
NPL System refers to the NPL Language and it’s UI,

shown in Figure 2. The NPL Language in-turn has a lexer,
a parser which generates byte-code and an interpreter which
consumes the byte-code. The UI has an event handler and
a visualiser, written using the game engine Panda3D, which
visualises code in 3D. The NPL Language and it’s UI are
designed to complement each other.

The design of NPL (short form for the NPL Language) is
discussed in the next section.

Note: All the screenshots are either zoomed in or zoomed
out versions of visualisation either to highlight areas of in-
terest or to overcome the limitations of the paper.

4. THE NPL LANGUAGE
NPL is a turing complete, stackless, strongly typed im-

perative procedural language1 with run-time type checking,
first-class functions and built-in associative arrays. NPL has
a prefix syntax like lisp and has the semantics of python
(without OO features) like types being attached to data
rather than variables. NPL is based on a paradigm called
the ”Connect Oriented Paradigm”.

In this section, we briefly introduce the syntax of NPL
with a few examples. The ”Connect Oriented Paradigm”
which forms the foundation for NPL is discussed next. In
the rest of this section following it, we will explain how the

1Only the features that can be visualised by NPL UI, as of
this writing, are discussed in this paper

Figure 2: Overview of the NPL system which is im-
plemented in python. The green call-outs show the
libraries used for those modules.

low-level execution details and higher level semantics of NPL
are implemented based on this paradigm.

Before we look at the syntax of NPL, here are some pro-
grams in NPL:

4.0.1 Hello World

(

(print ’Hello World’)

)

4.0.2 Fibonacci Sequence

(

(= a 0)

(= b 1)

(print a)

(print b)

(= lim 5)

(while (!= lim 0)

(

(= c (+ (+ a 0) b))

(print c)

(= lim (- lim 1))

(= a b)

(= b c)

)

)

)

4.0.3 Factorial of 3

(

(def fact n

(

(if (<= n 0)

(return 1)

(return (* n (fact (- n 1))))

)

)

)

(print (fact 3))

)

4.1 Syntax
NPL uses a prefix notation as it’s syntax similar to lisp.

Prefix notation was chosen as it closely resembles the seman-
tics of the language. Below is the syntax of NPL in EBNF
notation.

block : ’(’ (block)* ’)’

| ’(’ connect_name (atom)* ’)’

| ’(’ ’def’ (arg)+ block ’)’

connect_name : VAR // Connect name

| ’print’ | ’return’ | ’while’ | ’if’ //keywords

| ’=’ | ’+’ | ’-’ | ’*’ | ’/’ //operators

| ’>’ | ’>=’ | ’<’ | ’<=’ | ’!=’

atom : NUMBER | STRING | VAR | block

arg : VAR

NUMBER : //integers and reals

STRING : ’<text>’ //quoted strings

VAR : <text> // unquoted strings

block corresponds to a lisp S-expression and connect name
corresponds to a function name in lisp. A lisp programmer
would feel at home with the syntax of NPL and an average
programmer can easily decipher the meaning of the pro-
grams. It should be quite obvious by now that we do not
need any special understanding of the underlying paradigm
to write programs in NPL. An understanding of the Con-
nect Oriented Paradigm, described in the next section, is
only required if you want to understand and interact with
the visualisation.

4.2 Connect Oriented Paradigm
”Connect Oriented Paradigm”(COP) was designed as an

intermediate representation of programs, such that it is rich
enough to explain the semantics of the language and at the
same time is low-level enough for the interpreter to execute,
without hiding too many execution details. It is a paradigm
rather than a model/framework, as it influences the way we
think about NPL programs.

In COP, there are connects which communicate by send-
ing signals to each other. They are detailed below:

Signal:
Each Signal is an uniquely identified structure in the inter-
preter which carries the data between Connects. The data
on the signal and the destination of the signal determine
the data flow and the control flow of the program respec-
tively. Thus, a Signal unifies the control and data flow in
a program. When a Signal runs, it transfers it’s data to
the receiver 2 and runs the destination Connect(receiver).
A signal terminates itself, after it has run.

2If there is no receiver, it creates a default receiver(a Gener-
icConnect)

Connect:
Each Connect is a loosely coupled, uniquely identified struc-
ture in the interpreter which takes a signal as an input and
gives out a signal as output.

During its execution, a connect can create other connects.
The type of signal emitted by the connect during its execu-
tion depends on the following conditions:

• The type of connect(type not to be confused with type
systems in Programming Language Theory)

• The data it has received from the input signal3

• The current state of the connect (the connect behaves
like a Finite State Machine)

When a connect reaches it’s final state it sends a signal
to it’s sender and terminates itself , after making sure that
the connects created by it have also terminated. A connect
unifies all the processing that occurs in the interpreter.

All Connects and Signals manage their own memory. COP
is better suited for visualisation because, it unifies the con-
trol and data flow in a program into a signal which otherwise
would be scattered across a program counter, data stack,
heap and function call stacks. A Connect abstracts away all
the processing and side-effects into a single representation,
which otherwise would be embedded in the interpreter logic
and byte code logic.

After COP we designed, I found that it is very similar
to the Actor model [9]. The Connect and Signal are anal-
ogous to an Actor and message respectively. But COP is
much low-level than Actor model as Connect and Signal are
the atomic blocks of the interpreter where as an Actor and
Message are semantic high level objects which are executed
under the veil of the interpreter. Next, we will see how
the NPL Interpreter implements the low-level details of the
interpreter using COP.

4.3 NPL Interpreter
The NPL interpreter executes the byte code generated by

the parser. To simplify visualisation, all the low-level func-
tionality of the interpreter has been squeezed into the Sig-
nal and 3 special Connects: BlockConnect, GenericConnect
and SymbTableConnect. Everything else is implemented as
a built-in connect or a function inside the interpreter (dis-
cussed in the next section). This design makes NPL’s In-
terpreter a distributed interpreter [11] like the ACT 1 inter-
preter.

Thorough understanding of these 3 connects and the Sig-
nal are very important as they define the low-level execu-
tion details and some language semantics of NPL. Though
these are the implementation details of the interpreter, they
provide a concrete representation of the execution of the
program, which mirror the image the user has of the exe-
cution of the program. Understanding them is necessary to
understand the visualisation.

In the following subsections we will see a programmer’s
perspective (an overview) followed by the technical details
of the Signal and the 3 connects in NPL.

4.3.1 Signal

3In the present design only the first element of the data is
considered

As defined in §4.2 a signal in NPL carries data between
connects. If the signal has a pre-determined destination4,
then all the data on the signal will be the data for the des-
tination connect as shown in Figure 3(c).

If the destination of the signal is unspecified by the sender,
then the signal creates a GenericConnect§4.3.4 which will
decide the destination based on the first data member on
the signal as illustrated in Figure 3(a) and Figure 3(b).

4.3.2 BlockConnect
A block in npl, analogous to S-expression in Lisp, is any-

thing between ”(” and ”)”. A BlockConnect represents one
such block. Blocks in NPL can be nested, so can the Block-
Connects. Since blocks can be nested, a BlockConnect5 can
represent the whole program, a single line or a set of lines,
an expression or a part of it.

A BlockConnect plays many roles in the interpreter. These
roles can be categorised based on its contents into 3 types:
nested, unnested and a function. Irrespective of the cate-
gory, they are visualised in the UI as a blue box with the
words ”BLOCK” on it by default as shown in Figure 3(a).

A nested BlockConnect is one that contains other Block-
Connects as shown in Figure 4(a). A nested BlockConnect
represents a set of expressions. It executes each of the Block-
Connects in a serial fashion and terminates once all of the
nested BlockConnects are executed. When a nested Block-
Connect which represents the whole program is run, it seri-
alises the execution of whole program by executing its nested
blocks serially.

An unnested BlockConnect is one which does not have a
BlockConnect as its first element. For example, Figure 4(b)
shows 2 unnested BlockConnects which have ’print’ and ’+’
as their first elements both of which are built-in Connects.
The BlockConnects in Figure 4(b) represent the line (print
’Hello World’) and the expression (+ 100 b) respectively.

A function in NPL is a nested BlockConnect with a header
as shown in Figure 4(c). The header is used to store the
function’s name and its parameter lists. When a Block-
Connect with an optional header is run with out any input
arguments it stores the function definition in the Symbol Ta-
ble. If the same BlockConnect is called with an argument
list then it creates an internal symbol table in the function
scope, saves argument list and executes the function(runs
the nested BlockConnects). The appearance of a function
BlockConnect can be customised by a special configuration
file (see §5.4.1).

4.3.3 SymbTableConnect
A symbol table in NPL is best described as a dictionary

with some additional lookup rules to implement lexical scop-
ing. A SymbTableConnect implements a symbol table local
to a BlockConnect in NPL.

The SymbTableConnect just implements the rules for lex-
ical scoping and delegates the actual responsibility of storing
the values to a DictConnect, the connect which implements
a Dictionary. Whenever, a request for a accessing or storing
a variable arrives at a SymbTableConnect, it passes on that
request to the DictConnect (it’s internal dictionary), whose
response is sent to the sender. If the DictConnect does not

4the destination is determined by the sender(connect which
gave out the signal)
5The words BlockConnect and block are synonyms from now
on

(a) Signal emitted without a desti-
nation

(b) After Signal in (a) created a Gener-
icConnect

(c) Signal with a predeter-
mined(by GenericConnect)
destination

(d) All 3 images

Figure 3: The above images are taken from Fig-
ure 1(b). The blue box with text ”BLOCK” rep-
resents a BlockConnect. The red box represents a
GenericConnect. The blue arrow represents a sig-
nal with its data on top and pointing towards its
receiver.

(a) A nested BlockConnect

(b) 2 Unnested
BlockConnects

(c) BlockConnect that imple-
ments a function

Figure 4: The above images show various ways in
which BlockConnect executes.

have the value, happens when a global variable is accessed
within a function, the SymbTableConnect looks up for the
value in it’s parent scope.

Figure 5(a) shows storing a new variable ’b’ in the symbol
table and Figure 5(b) shows accessing the value of variable
’b’ from the symbol table. The symbol table in Figure 5
already has a variable ’a’ in it.

This design was chosen for implementing the symbol table
in the interpreter for 3 reasons. Firstly, to make the seman-
tics of NPL similar to the semantics of python. Secondly this
eases adding reflection and meta-programming facilities to
NPL in future. Thirdly, no special visualisation is required
for symbol table as it can be visualised just like any other
dictionary in the UI.

(a) Assignment of value 6 to b

(b) Getting the value of b from the symbol table

Figure 5: The above images show the assignment
and retrieval of values from the SymbolTable.

4.3.4 GenericConnect
For understanding the visualisation, you can safely as-

sume that a GenericConnect does everything in the inter-
preter that the Signal, BlockConnect and SymbTableCon-
nect do not. It is visualised in the NPL UI as a red box as
shown in Figure 3.

The GenericConnect functionally performs the following
tasks. Firstly, it looks at the data from the input Signal and
decides the output signal depending on the first element on
the incoming signal. If the first element on the incoming
signal is a function6, it creates a BlockConnect representing
the function body and passes the parameters as values to
the BlockConnect. If the first element is a BlockConnect,
it sends all the input as data on the output signal to the
BlockConnect.

A GenericConnect also manages the creation and destruc-
tion of function scopes. The function call mechanism of NPL
like python is call-by-value, which is enforced by Generic-
Connect. Only an overview of the functionality is provided
to avoid the unnecessary implementation details.

A Signal with no destination creates a GenericConnect as
its destination. They work in unison to provide the required
functionality of mapping the name of a function to its im-

6The function name look up happens from the symbol table.
Refer next section for details on built-in connects.

plementation. For example, if the data on the signal is (+,
100, 98) with no receiver (no Connect on the destination),
the signal creates a GenericConnect which will become its
destination. The GenericConnect will look at +, the first
element of the data on the signal, finds out that addition
should be performed and creates an AddConnect and sends
a signal with the rest of the data(100, 98) to the newly cre-
ated AddConnect. This is illustrated in Figure 3(d).

4.4 Interpreter’s view of a program
An interpreter looks at an NPL program as a BlockCon-

nect. This BlockConnect contains nested BlockConnects
which in turn may be a nested BlockConnect or an unnested
BlockConnect (function / built-in connect with some param-
eters). For example, the ”Hello World” program §4.0.1 will
be seen by it as shown in Figure 7.

Bootstrapping: The process of running the BlockCon-
nect which represents the whole program, to start the exe-
cution of the program, is called Bootstrapping. During this
process the interpreter creates a BlockConnect which rep-
resents the whole program and a signal to run this Block-
Connect. When the interpreter starts running after it is
bootstrapped, it runs this signal which runs the BlockCon-
nect. The visualisation shows everything in the UI after the
first signal has been executed as in Figure 9(a).

This is all there is to know about the internals of NPL. In
the next section we will see some built-in connects, which
provide the conventional facilities of an interpreter and will
help us write useful programs in NPL.

4.5 Rest of the Language Features
NPL provides built-in connects for Relational and Binary

operators, Conditional flow and iteration, I/O facilities, dic-
tionaries etc, the tasks which the NPL interpreter itself can-
not do. Figure 6 documents the built-in connects and their
functions in NPL. Each of these connects take their data(if
any) on the input signal, perform the operation and return
the result on the output signal. These built-in connects
when used in conjunction with the Signal and 3 Connects
discussed in the previous section make a turing complete
interpreter that can be used for running useful programs.

All these connects obtain the value of the variables in their
input by performing a lookup from the symbol table.

Design Tradeoff: Ideally, all the built-in connects can
be implemented as functions in NPL, whose values will be
looked up in the symbol table every time a function is in-
voked. But this lookup for built-in connects complicates
the visualisation as the user expects them to be the part of
the runtime. To facilitate visualisation, the GenericConnect
was designed to decide the Connect to execute for built-in
connects, instead of doing a symbol table lookup. Since + is
a built-in connect, the GenericConnect has created an Ad-
dConnect in Figure 3(d), instead of doing a symbol table
lookup to know what + stands for.

Next we will see how programs written using these con-
nects can be visualised in the NPL UI.

5. NPL UI
The NPL UI is an interactive direct manipulation User

Interface in which an NPL program is visualised in 3D7.

7The visualisation is 2D at present

Connect Type(Usage) Description

Binary Operators
These connects take
their operands from
input signal, perform an
operation and return the
result in the output
signal .

AddConnect(+) This connect adds 2 numbers.

SubtractConnect(-) This connect subtracts 2 numbers.

DivConnect(/) This connect multiples 2 numbers

MultConnect(*) This connect divides 2 numbers.

Relational Operators

These connects take the
operands from the input
signal and return a
boolean value in the
output signal.

GtConnect(>) This connect performs the greater than
comparision of the inputs

GeConnect(>=) This connect performs the greater than or
equal to comparision of the inputs

Lt Connect(<) This connect performs the less than
comparision of the inputs

LeConnect(<=) This connect performs the less than or equal to
comparision of the inputs

Ne Connect(!=) This connect performs the checks for the
quality of the inputs

Conditional flow

These Connects
implement the
conditional statements.

If Connect(if) This connect implements the “if “conditional
and “if-then-else” conditional. It takes a
conditional block as the first parameter. The
next block will be executed when the
condition is true. The optional 3rd block will
be executed when the condition is false.

While Connect(while) This connect implements a while loop.The
first block is the condition to be executed.The
second is the body of the while loop.

I/O Operations
These connects perform
the I/O operations.

Print Connect(print) This connect prints the input from the signal.

Read Connect(read) This connect reads the input from the console
and returns the data read as a signal.

Utility Connects
These are some other
utility connects that are
available.

Equal Connect(=) This connect performs an assignment
operation.It takes a variable and it's value and
saves them to the symbol table.

ReturnConnect(return) This connect takes care of returning values
from a function.

Structres
NPL provides
associative arrays which
can be used as structures
and lists.

DictConnect(dict) This Connect implements an associative array
aka dictionary.

Figure 6: Table showing all the built-in connects in
NPL

The UI runs off the events generated by the connects and
signals running in the interpreter (see Figure 2). Once the
events are gathered, the UI visualises the connects and sig-
nals in a 3D environment using a layout algorithm. The
layout algorithm used currently is a tree layout algorithm
with some tree re-writing rules which change the structure
and appearance of the tree. The exact details of the algo-
rithm are out of scope of this paper.

In this section, i will give a brief overview on the events
that the UI receives after which we will see the visualisation
of a few programs in NPL.

5.1 UI Events
The UI runs off the events generated by the NPL inter-

preter. The information present on the events is nothing but
the internal state of the Connects and the Signals. Some ex-
ample events are shown below. Some of the details on the
events are self-explanatory and are not discussed here fur-
ther as they are gory implementation details.

CycleStart

SigCreate:{’sender’: ’106’,’name’: ’110’,’id’: ’110’,

’scope’: 0, ’payload’: [’print’, {’type’: ’STRING’,

’value’: ’Hello World’}], ’reciever’: -9999}

SigRun:{’id’: ’109’}

ConnCreate:{’sender’: ’111’,’last_scope’: 0,

’current_state’: 0, ’name’: ’112’, ’scope’: 0,

’type’:’PrintConnect’, ’id’: ’112’, ’data_stack’:[]}

Figure 7: BlockConnect view of the ”Hello World”
Program

ConnRun:{’sender’: ’108’, ’signal’: ’110’,

’current_state’: 0, ’data_stack’: [],

’id’: ’106’, ’name’: ’106’}

ConnTerm:{’id’: ’112’, ’name’: ’112’}

CycleEnd

Though this approach is very much similar to the usual
approach of instrumenting the interpreter, it differs from
the traditional approach as the events contain all the high-
level and low-level information there is about the execution
of a program. It should also be noted that most of this
information is really closer to what the NPL programmer has
in his mind regarding the execution of the program rather
than some low-level byte-code instructions for a stack based
VM.

5.2 Examples
In this section, we will see the visualisations of some pro-

grams written in NPL and show how the visualisation de-
picts the execution and semantics of the program. We have
chosen small programs for visualisations of code considering
the limitations of this medium.

5.2.1 Hello World
The ’Hello World’ program in NPL is given below and it’s

visualisation can be seen in Figure 8. We will see how we
got the visualisation by going through the program step by
step and finally see if the visualisation matches the view we
had in our mind about the execution of the program.

(

(print ’Hello World’)

)

The parser generates a BlockConnect view of this program
(in the byte-code) which looks like Figure 7. This structure
is very much similar to our program.

For the sake of explanation, we will use the internal id’s
of Signals and Connects to refer to a particular object in
the UI. This is necessary when we are talking about many
Signals and Connects in the same sentence. These internal
id’s are not required while viewing the visualisation
in the UI, as it is animated. The first element of
the signal is the internal id. The rest is the data on
the signal. The id for Connects are shown on top of
them.

Figure 8: Visualisation of the ’Hello World’ program
in the NPL UI

• After the interpreter bootstraps, we will see a Block-
Connect (102) which represents the whole program
and a signal (105). This signal when run executes its
destination the BlockConnect (102) .

• The signal (105) runs, executes the BlockConnect (102),
it’s destination and terminates8. Since BlockConnect
(102) is a nested BlockConnect, it creates a new Block-
Connect9 (106), gives out a Signal (107) without des-
tination to execute the newly created BlockConnect
(106). This is shown in Figure 9(a).

• The signal (107) runs10 and creates a GenericConnect
(108), since it does not have a destination, and runs the
GenericConnect. The GenericConnect (108) identifies
from the data that the BlockConnect (106) should be
run, and gives out a signal (109) for that BlockConnect
to execute as shown in Figure 9(b).

• When the Signal(109) is run, it executes the BlockCon-
nect (106), its destination. The BlockConnect (106)
runs and gives out a Signal (110) with its contents
(print, ’Hello World’) as its data, since it is a unnested
BlockConnect as shown in Figure 9(c)

• Since the signal (110) has no destination, it creates a
GenericConnect (111), transfers the data to it, runs
the GenericConnect (111) and terminates. Based on
the first element of the data (print), the GenericConnect
(111) identifies that data should be sent to a built-in
Connect, the PrintConnect. So, it creates a PrintCon-
nect (112) and sends it a signal (113) with its data of
other than first element (’Hello World’). This is shown
in Figure 9(d).

• When the signal (113) runs, it transfers its data to the
PrintConnect and runs the PrintConnect. The Print-
Connect prints the data (’Hello World’) to the terminal
and returns a signal (114) to its sender and terminates
as shown in Figure 9(e).

• The signal (114) runs and executes the GenericConnect
(111). The GenericConnect (111) intern has nothing
to do, so it sends a signal (115) to its sender11 and
terminates. This is shown in Figure 9(f).

8The UI is yet to be enhanced to visualise Active and Ter-
minated objects in different ways
9The newly created BlockConnects are not shown in the UI
until they are needed

10All Signals terminate after they are run
11Once a Connect has reached its final state it terminates
after sending a signal to its sender

Figure 10: Visualisation of the ’Variable Assign-
ment’ program in the NPL UI

• The Signal (115) runs and executes the BlockConnect
(106). The BlockConnect (106) runs, sees that it is in
its final state since it is an unnested BlockConnect and
terminates after sending a signal (116) to its sender.
This is shown in Figure 9(g).

• The signal (116) runs and executes the GenericConnect
(108). The GenericConnect (108) runs, sees that it is
in its final state, sends a signal (117) to its sender and
terminates as shown in Figure 9(h).

• The signal (117) runs and executes the BlockConnect
(102). This BlockConnect (102) checks to see if there
are any more BlockConnects that should be executed
since this is a nested BlockConnect. Since this is one
line program it has no more nested BlockConnects to
execute. Unlike other BlockConnect’s this BlockCon-
nect (102) terminates the program by terminating it-
self, since this BlockConnect represents the whole pro-
gram.

Now, if you compare the Figure 7 and Figure 9(h), you
can see how similar they are. Everything that we know
the interpreter does is inside the red boxes and the data
and control flow we assume is nicely packed into the blue
Signals in Figure 9(h). This figure shows the higher level
semantics of the language which are blocks and the lower
level execution details of code in a nice way.

You should have already observed that the explanation
of the processing in the interpreter was a bit too repetitive.
The reason for repetition is that the simple rules of signals
and connects involved were used again and again in various
contexts, during the execution of the program.

5.2.2 Variable Assignment Program
In this section, we will visualise the program shown below.

(

(= a 5)

(print a)

)

This program assigns a value 5 to the variable ’a’ and
then prints the value of ’a’. The complete visualisation of
this program can be seen in Figure 10.

Instead, of explaining the visualisation in a step by step
fashion similar to the ’Hello World’ program §5.2.1, we will

(a) (b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 9: The above images are screenshots of the execution of the Hello World Program.

give an overview of it, highlighting any new aspects of visu-
alisation.

• The first BlockConnect has 2 nested Connects which
it executes in a serial fashion.The visualisation of the
2 lines of code is shown as 2 branches of the Block-
Connect as shown in Figure 11(a).

• The visualisation of the BlockConnect (= a 5), in the
first line of code, is shown in Figure 11(b).

• The visualisation of the exact assignment operation
(part of Figure 11(b)) is illustrated in Figure 11(c).

• Various stages of the assignment in Figure 11(c) are
shown in Figure 12. You should have noticed by now
that the Connect which wants to communicate with
the symbol table sends out a signal with it’s first ele-
ment as ’arg’. Looking at ’arg’ in the incoming signal,
the GenericConnect sends the data to the symbol table
in that local scope (see Figure 12(b)).

• The second line of code (print a) would be executed
similar to the ’Hello World’ program, except that the
PrintConnect now resolves the value of the variable
from the symbol table, before printing it on the termi-
nal as shown in Figure 11(d).

• The PrintConnect gets the value of variable ’a’, which
is then printed onto the terminal. This is shown in
Figure 11(e).

In short, this is how the variable assignment program ex-
ecutes. You should have already noticed that we have ex-
plained the visualisation in a top-down fashion, rather than
the bottom-up fashion of the ’Hello World’ program. More-
over, this top-down approach has enabled us to view un-
derstand the visualisation at various levels (line , block ,
expression, internal assignment). This flexibility in design,
allows visualisation of code at various levels of granularity,
which is further discussed in §5.4.5.

5.2.3 More examples
The visualisations of the above examples and a few more

programs can be found online at:
http://users.boinc.ch/mansu/npl/npl.html.
The interested reader is encouraged to view the demo, to

gain better insights into the visualisation than is possible
with prose and some screenshots.

5.3 Implementation
The present system is a proof of concept prototype imple-

mented in python. The libraries used for various modules
are shown in Figure 2. Optimising for speed and space is
part of future research. At present, the NPL programs are
16 to 45 times slower than an equivalent Python program12.
However, note that the results can be off the mark, since the
prototype is not optimised. The present implementation is
cross platform13.

12The performance figures are arrived at by taking average
execution times of factorial of 1000 and the computing the
first 1000 Fibonacci numbers.

13Runs on windows and Linux

5.4 Other Features of UI
The primary goal of NPL is to visualise the execution of

code with its semantics intact. It was later realised that
this design of NPL, based on COP, aids other applications
which ease software development. Some of the potential
applications are described below.

5.4.1 Customising the UI
Though the default visualisation of code is good enough

to understand the execution of code, the programmer is usu-
ally lost in a sea of identical looking objects while visualising
big blocks of code. To alleviate this problem, NPL allows
its users to customise the appearance of the connects in the
UI, paving way for domain specific visualisation. The visu-
alisation can be customised by specifying a key : value pair
in the ui.cfg file, containing the name of the function and a
custom image to represent it in the UI, as shown below.

[textures]

fact:media/fact.png

The above configuration tells the visualiser to use the im-
age fact.png whenever it displays the function fact. The
visualisation without and with customisation is shown in
Figure 13(a) and Figure 13(b) respectively. We can identify
where the function is being called in Figure 13(b) in a quick
glance, because we put out our visual cognition system to
use.

One more example is the customised representation of the
DictConnect used for storing the data of the symbol table
as illustrated in Figure 5. Similarly, the look of any connect
can be customised.

5.4.2 Interactive Testing and Debugging
Adding interaction capabilities to the Signals and Con-

nects displayed in the NPL UI would double the UI as an
interactive testing and debugging environment. By directly
manipulating the objects in the UI, we can manipulate the
data and control flow of the program in an intuitive fash-
ion. For example, changing the data on the signal in Fig-
ure 14 from (+, 100, 98) to (−, 200, 98), we are altering the
data(100 to 200) and control flow (addition to subtraction14

operation) of the program.
The UI visualises and maintains a history of the execution

of the program. This is useful while debugging, to answer
the questions like ”How did it get here?”.

5.4.3 Code Visualisation at varying speeds
The speed with which a user can understand a visualisa-

tion depends on the person and on the complexity of the
program. The NPL UI allows the user to vary the speed of
visualisation while the program is running to accommodate
users with varied skill levels.

5.4.4 Optimisations
The motto of NPL is to show everything as it happens

inside the interpreter, and this includes visualising the opti-
misations performed by the interpreter.

One example, of such an optimisation is GenericConnect
creating the built-in connects without doing a lookup in the
symbol table. This optimisation also helps in making the
UI more intuitive.

14can also be any valid function name

(a) The above image shows the execution of the
2 lines of the code in the UI

(b)

(c)

(d)

(e)

Figure 11: Some screenshots of the execution of the ’Variable Assignment’ Program.

(a) EqualConnect sends the variable and it’s value to the symbol table

(b)

(c) Symbol Table delegates the actual task of storing the variable to a DictCon-
nect

(d)

(e) The DictConnect saves the variable as a key:value pair

Figure 12: Screenshots of the execution of the assignment in the ’Variable Assignment’ Program.

(a) UI without customisation

(b) UI with customisation

(c) Customised Connect showing Factorial func-
tion. The signals show the arguments and return
values of the function.

Figure 13: The above images show the uncus-
tomised(a) and customised(b) NPL UI for the ex-
ecution of Factorial program. The Yellow box with
’ !’ is the logic of the factorial function.

Figure 14: The Screenshot shows interactive editing
of data on a Signal.

Figure 15: Screenshot of short-circuiting of Signals
in ”Hello World” program in Figure 8

You should have observed in the ”Hello World” example
that many of the connects were just returning the signal
to their sender without doing any further processing on the
data of the signal. This happens in approximately 50% of
the signals. So, we have implemented an optimisation, in
which the signal will be directly returned to the Connect
which intends to do something with the data on the signal,
instead of the immediate sender. So, in ’Hello World’ ex-
ample, the PrintConnect will return the signal directly to
BlockConnect, instead of it’s sender. This short-circuiting
once implemented in UI, would be visualised as shown in
Figure 15.

5.4.5 Multiple Views of Code
Providing multiple views of the source with varying lev-

els of granularity15 is the most wanted feature of any code
visualisation system. Though the NPL UI does not provide
these features in its current version, the present design of
NPL language facilitates these features. Multiple views of
code are possible in NPL by using special layout algorithms
to layout Signals and Connects with custom visualisations.

The present design also allows viewing source at various
levels of granularity. For example, a function level overview
of the program would mean not drawing all the connects and
signals on the UI after the BlockConnect which represents
the function logic is drawn. In the factorial program above
we will not draw anything beyond the yellow box with ’ !’
symbol in Figure 13(b), if we need a function level overview.
The input and output signals to this block represent the
arguments passed to the function and the return value of
the function respectively, as shown in Figure 13(c).

As we have seen, re-designing the language not only makes
it easy to visualise code, but also makes way for other fea-
tures which are difficult to implement in existing systems.
Hence we feel that, language is the foundation on which the
tower of visualisation should be built.

6. ADVANTAGES
15Immediate future goal of NPL UI

NPL is a better system for code maintenance as it is pos-
sible to visualise the execution of code with its semantics
intact. The task can made easier further, by customising
the visualisations and by viewing code at multiple levels of
granularity.

Better visualisation also improves code quality (indirectly)
because it enables more people to read code more easily and
hence bugs can be caught faster. During development of the
NPL system, we have caught a few bugs (harmless) in its
implementation through the visualisation of test programs
in the UI, which reinforces that visualisation can help us
track bugs, which would not be caught by peer review of
code or by test cases.

The simplicity and generality of COP makes it easy to vi-
sualise a subset of existing languages once their interpreters
are re-designed based on COP. NPL is a proof of this as it’s
semantics are same as that of python language without the
OO features.

The events that NPL interpreter produces are saved into a
file, which can be used for off line visualisation of the execu-
tion of the program. The events generated by the interpreter
do not have any UI information attached to them, hence bet-
ter visualisers can be built without any modifications to the
interpreter, thus making the visualisation implementation
independent, which is one of our design goals.

In NPL the performance overhead due of visualisation is
constant at 10%, since that is the time required to post
everything there is about the execution of the program as
events to the UI. For instrumented interpreters, the over-
head usually increases with increasing granularity of the vi-
sualisation system.

7. DISADVANTAGES
At the first sight, NPL might not seem pragmatic because

only code in NPL can be visualised. But we feel that long
term advantages offered by a language similar to NPL far
outweigh the short term cost of switching to NPL. Though
it is possible to visualise existing languages by building in-
terpreters for them using COP, they would not offer all the
advantages compared to a language designed specifically for
visualisation would offer.

This system cannot be used for visualising non-functional
aspects of code like performance metrics etc. without fur-
ther modifications to the interpreter. But the modifications
needed would be minor.

As pointed out in [10], the utility of a visualisation system
depends on the quality of visualisation. Better visualisers
are needed for maintaining large bases of code and building
better visualisers is not an easy task.

Though any feature can be added to NPL, we feel that
some language features are easy to visualise compared to
others. For example, anything performed at compile time
(like c style macro expansion) will be difficult to visualise in
this system.

8. RELATED RESEARCH
To the best of my knowledge, NPL is the first language

designed with code visualisation as its design goal. However,
many elements of our approach have a long history.

”Connect Oriented Paradigm”, though independently de-
signed, is very similar to the Actor Model [9] in which Actors
send messages to each other. The Connect and Signal are

analogous to Actor and Message respectively. Hence, NPL
and ACT 1 [11][12] are similar in many respects. For ex-
ample, ACT 1 has a distributed interpreter, consisting of a
set of predefined actors which respond to messages which
correspond to conventional actions of a interpreter. The
NPL interpreter also provides the conventional facilities of
an interpreter via various built-in connects. However, NPL
is more specialised than ACT 1 as it is designed for visual-
isation. For example, the ACT 1 interpreter serialises the
execution of events instead of a special actor analogous to
BlockConnect in NPL. It cannot be hidden in NPL as we
have to visualise the serial execution of the program.

The field of Visual Programming Languages sought to re-
place textual programming with diagrams [13]. But Visual
Programming Languages did not work well in practice as
diagrams cannot be as expressive as text [10][7]. Pictorial
Janus [2] was different from its ilk as it unified the repre-
sentation and execution of programs. However, you cannot
see the code and its execution at the same time. But text is
more expressive, precise and is sometimes faster to under-
stand than a visual syntax.

Program Visualisation systems were built to visualise code.
Most of the research in program visualisation has been either
for teaching(algorithm animation) or performance tuning for
applications, written in Java, C, C++, modula etc., but
none of them make it easy for a developer to read code [10].
Algorithm animation systems like Balsa and Tango [10] though
highly informative, are not suited for program visualisation
and reading code as they require days to months to con-
struct an animation. Developers in industry work on tight
deadlines and do not have the luxury of building specialised
animations. They need something like NPL which works
out of the box and visualises code exactly as it was written,
so that they can concentrate on the task at hand.

The Transparent Prolog Machine [4] provides an innova-
tive graphical view of the program execution via an inter-
face designed to suit Prolog’s complex execution model. It
was a sophisticated tracer with facilities for providing mul-
tiple views of source code with varying levels of granularity.
However, it does not display the exact data and control flow
of the program, but only few high level aspects of it [15].
Plater [14], a new SV system for Prolog was designed based
on earlier research whose goal, in short, was to provide an
overview of the execution program with the its semantics,
but not the exact execution of code.

ZStep95 [8] was an interactive code stepper that sup-
ported reversible execution and animation of lisp programs.
But it was a more sophisticated debugger than a code visu-
aliser as a result it could only model a subset of LISP and
the kinds of visualisation it produced were limited. NPL UI
draws most of the inspiration, for the interactive testing and
debugging of application via direct manipulation and corre-
spondence of code with its execution, from this pioneering
effort. NPL improves over it by visualising everything that
happens in the interpreter in the UI instead of specific as-
pects of execution.

Though IDE’s with integrated debugging facilities provide
the facilities like linking code with the expression being eval-
uated, they are difficult to use and they do not understand
the semantics of the language. Even a sophisticated debug-
ger cannot visualise the optimisations, that are done in the
interpreter.

Text is highly expressive. But animations are good at

conveying abstractions and dynamism. NPL has the best of
both worlds. We take the input program as text which is
easier to express, has better density and more expressivity
and show its execution as an animation while keeping the
semantics of the program intact.

9. CONCLUSIONS AND FUTURE WORK
In this paper, we have seen why a language should be re-

designed to aid code visualisation. Next we have introduced
the Connect Oriented Paradigm which was similar to the Ac-
tor Model upon which the NPL language was built. Based
on COP we have designed the NPL Language and explained
how the semantics of the language were implemented using
the Signal and the 3 connects. Later we have seen a step by
step visualisation of the ”Hello World” program in the NPL
UI. This example was a proof of the intuitive visualisation
of code with its semantics intact.

We have also seen how this design of NPL aids in building
domain specific visualisations of code and interactive testing
and debugging of applications. These features are just tip of
the iceberg and there is bright future ahead for NPL. Some
of future goals of NPL are listed below:

• The ability to provide multiple views of the source code
at various levels of granularity is the most important
feature of any visualisation system.

• NPL at present only allows customising the look of
an individual Connect. However, the ability to cus-
tomise the look and the layout of a group of connects
via advanced layout mechanisms will be a very useful
feature for library builders who would like to ship a
custom visualisation and layout for the components of
their library along with the code. This feature will
make languages with visualisation mainstream as they
offer a clear advantage over existing approaches.

• The ability to interact with the program while sup-
porting reversible execution via the UI will make test-
ing and debugging systems a lot easier.

• Since the NPL interpreter is stack-less and is very
much similar to the Actor model, we would like to add
concurrency and distributed programming capabilities
to NPL and the UI in future. OO facilities to NPL are
also planned.

While working on NPL, I learned that the a careful bal-
ance of visualisation and language features would provide
the best experience for programmers. We also observed that
atleast a subset of existing languages can be visualised by
re-designing the languages using COP. I would like to con-
clude that COP and visualisation may not effect the way we
write and think about programs16, but they would certainly
effect the economics of writing programs.

10. REFERENCES
[1] E. S. M. B. A. Andres Moreno, Niko Myller.

Visualising programs with jeliot 3. In Proceedings of
Advanced Visual Interfaces. ACM, 2004.

16They may not change the semantics of existing languages
in a significant way

[2] G. W. J. Q. Ch. Geiger, R. Hunstock. Visual modeling
and 3d-representation with a complete visual
programming language - a case study in
manufacturing. In Proceedings of the 1996 IEEE
Symposium on Visual Languages. IEEE, September
1996.

[3] J. Edwards. Subtext: uncovering the simplicity of
programming. In OOPSLA ’05: Proceedings of the
20th annual ACM SIGPLAN conference on Object
oriented programming systems languages and
applications, pages 505–518, New York, NY, USA,
2005. ACM Press.

[4] M. B. Eisenstadt M. Transperant prolog machine: An
execution model and graphical debugger for logic
programming. In Journal of Logic Programming,
volume 5, pages 277–342, 1988.

[5] K. A. Frenkel. An interview with ivan sutherland.
Commun. ACM, 32(6):712–714, 1989.

[6] A. M. Garcia. The design and implementation of
intermediete codes for software visualisation. In
Master’s Thesis,Department of Computer Science.
University of Joensuu, 2005.

[7] T. R. G. Green and M. Petre. Usability analysis of
visual programming environments: A ’cognitive
dimensions’ framework. Journal of Visual Languages
and Computing, 7(2):131–174, 1996.

[8] C. F. Henry Lieberman. Zstep95, a reversible,
animated source code stepper. In Software
Visualisation: Programming as a Multimedia
Experience. MIT Press, September 1997.

[9] C. Hewitt. Viewing control structures as patterns of
passing messages. In AI Memo 410. Artificial
Intelligence Laboratoty,MIT, December 1976.

[10] M. H. B. Jhon Stasko, Jhon Domingue and B. A.
Price. Software Visualisation: Programming as a
Multimedia Experience. The MIT Press, Reading,
Massachusetts, 1998.

[11] H. Lieberman. A preview of act 1. In AI Memo 625.
Artificial Intelligence Laboratoty,MIT, June 1981.

[12] H. Lieberman. Concurrent object oriented
programming in act 1. In Object Oriented Concurrent
Programming. MIT Press, September 1987.

[13] T. L. Margaret Brunett, Adele Goldberg. Visual
Object-Oriented Programming:Concepts and
Environments. Prentice Hall, 1995.

[14] P. Mulholland. Using a fine-grained comparative
evaluation technique to understand and design
software visualization tools. pages 91–108.

[15] P. Mulholland. The effect of graphical and textual
visualization on the comprehension of prolog
execution by novices: an empirical analysis, 1994.

[16] N. Myller. The fundamental design issues of jeliot 3.
In Master’s Thesis,Department of Computer Science.
University of Joensuu, 2004.

[17] W. P. on compilatioan Martin Rinard.
http://www.ai.mit.edu/projects/dynlangs/talks/compilation-
panel.htm.
2001.

[18] B. Verners. Inside the Java Virtual Machine,2nd
Edition. McGraw Hill,
http://www.artima.com/insidejvm/ed2/.

